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Bingham flow in a porous medium is considered. This can he modelled by a random structure whose dimensions are large compared 
with the local scale. The principal term of the asymptotic form of the critical pressure at which the liquid starts to move in this 
limit is computed explicitly. 0 1998 Elsevier Science Ltd. All rights reserved. 

For Bingham flow t.hrough a porous medium, the relation between the flow rate and the pressure, which 
is equal to the difference of the volume density of mass forces and the pressure gradient, is non-linear 
and contains a critical parameter: seepage only takes place at pressures above a certain threshold value. 
Certain mixtures of liquids which do not initially possess rigid-plastic properties behave similarly. For 
example, water in which there are air bubbles might not flow through a porous medium because the 
pores are sealed, and a pressure which can push the bubbles through the pores, overcoming the surface 
tension, is required before flow can begin. 

The Darcy relation between the pressure and the flow rate, which in general is non-linear, has been 
established experimentally for practical porous media. One can also use a purely theoretical approach, 
investigating the fluid flow in a porous region comprising a system of numerous pores and averaging, 
that is, determining the principal term of the asymptotic form of the solutions as the number of pores 
increases. It is sometimes possible to use this method to obtain acceptable estimates for the parameters 
in the Darcy relation and their connection with the properties of the liquid and the structure of the 
medium. No less important a result of such an investigation, albeit only qualitative, is the proof that it 
is possible to transfer from the problem at the microlevel to the simpler equations of the theory of 
seepage through a porous medium. This is the method used to prove Darcy’s law for linearly viscous 
liquids in [l-3], where the pore structure was taken as a small-scale region with a periodic structure. 
These results have also been extended to random structures [4,5]. Bingham flow has been averaged 
[6] only over periodic structures. There are specific features of Bingham liquids which make it difficult 
to average over random porous regions. 

In this paper we examine a problem which illustrates one of these difficulties and which shows what 
new effects one can expect compared with the periodic case when averaging is used. 

1. STATEMENT OF THE PROBLEM 

Consider a porous medium consisting of a large number of random pores aligned in the same direction. 
A section of this system of pores by a plane perpendicular to their direction is a random two-dimensional 
region R, consisting of separate elements of random shape, size and position, but which might also be 
connected. Fibrous porous materials have structures of this kind. They are also appropriate to use in 
a general situation where the liquid crossflow in transverse pores is insignificant. We will model the 
region Q with a random Bernoulli chequerboard, constructed as follows: a square of size r x r is divided 
into a large number of cells of size a x a, a 6 r, and then independently of the other cells, each cell is 
left where it is with[ probability p or removed, with probability 1 -p; the region Q = Q(4 is the set of 
cells that remain. To fix our ideas, we shall take r to be a large parameter, and the size of the cell a as 
a fixed number. While this is not the best geometric model of real porous media we could use, it is 
often employed in investigations because it is easy to visualize and simple to describe. 

Suppose that the liquid fills the entire pore space and is acted upon in a longitudinal direction by a 
constant pressure. In this case, the steady-motion problem reduces to a two-dimensional problem in 
R for the longitudinal velocity component of the liquid with a Dirichlet condition on the pore boundaries. 
The critical pressure (CP) at which the liquid starts to move is a random number which depends on 
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the parameter r. It will be shown that the principal term of the asymptotic form of the CP as r + 00 has 
the form C/d(ln r) with non-random constant C which can be computed explicitly. 

If the pore structure is periodic, the CP would have a positive limit as r + 00. Allowing for the 
randomness of the structure might therefore have a decisive influence on the averaged seepage properties 
and result in degeneracy of the CP 

This degeneracy is easy to explain in qualitative terms. As the pressure increases, the Bingham liquid first begins 
to move in the widest pores. Thus the value of the CP does not depend on the typical portions of pore structure, 
but on the presence of abnormally large pores. The more representative a portion of the porous medium is, the 
sooner a particularly large pore will be found and therefore the lower the pressure at which the liquid starts to 
move. Thus the CP degenerates. The order of degeneracy and, especially, the explicit asymptotic form, depend 
on the specific model of the random structure. The decisive feature here is not the average statistical properties 
of the structure, such as the typical pore size, but the probability of large deviations. For this reason it might be 
ineffective to use averaging methods for Bingham flow in a real porous medium, since it is never possible to obtain 
the statistics of infrequent deviations reliably from the results of direct observation. 

2. BASIC DEFINITIONS AND FORMULATION OF THE RESULT 

The liquid velocity in the cylindrical region described above has just one component, u, which depends 
on the coordinates (x, y) on Q. The strain rate tensor has just two important components, which can 
be expressed in terms of the components of the gradient of the function u. We define the rheology of 
the Bingham liquid, specifying its dissipative potential by the formula 

W(VU) = klVu1 + l.l1vu1*/2, v = (&3X, My) 

The two non-zero components of the tensor of tangential stresses are defined in terms of W by the 
equation r = aW/aVu whenever the function W is differentiable; at the conical point Vu = 0, however, 
they can take values 1 z 1 s k. The specific form of the second term in the dissipative potential will be 
unimportant below, provided that W increases fast enough and is convex. 

The problem of the steady motion of a viscous liquid in a cylinder has a variational formulation [7, 
81: the longitudinal component of the velocity gives a minimum of the functional 

J(U) = ]* [ W(Vu) - iu]dxdy 

where i is the pressure, and the lower bound of J is found from the functions u(x, y), which are equal 
to zero on the boundary asL of the cylinder section. 

Owing to the conical singularity of the dissipative potential, the minimum of J is zero not only at i 
= 0, but also for sufficiently small i > 0. As the pressure increases, the minimum becomes negative, 
and the minimizant U(X, y) becomes non-zero. The formal definition of the CP at which this happens 
has the form 

i*(Q) = sup(i: inf J = 0) = inf(i: inf J < 0} 

Apart from J we consider the functional 

J,(u)=], [kIVuI-iu]&dy 

The solution of the problem is a continuous function of i, and so for near-critical pressures the second 
term in the expression for W is small. Hence, we can use Jo instead of the functional J in the definition 
of i*. This can be stated exactly as follows: for i < i* inf Jo = 0, and for i > i* inf Jo = -90. Hence we 
have the following variational definition of the CP 

(2.1) 
We shall seek the lower bound here among functions which satisfy the normalization condition and 

are equal to zero on a&L Note that the functional.&, does not grow fast enough, and for i 2 i* its lower 
bound cannot be achieved. All the more so, its minimizant like that in (2.1), is not necessarily identical 
with the solution of the original problem. 
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Formula (2.1) can be used to compute i*(n) explicitly only if the region R is sufficiently simple, like 
a circle. There has been a great deal of research on the flow of viscous liquids, including Bingham liquids, 
in circular i 

?Te 
s [7, 81. It is impossible to obtain an analytic solution for the random chequerboard 

structure Sz described above, although the principal term of the asymptotic form i*(Q)@) as r + 00 
can be found explicitly and has the form 

i*(nq = kh&.““, V, = da” ln(r I a)(ln(l / p))-’ 

hd = d&(l-( 1 + d/2))-*ld 

(2.2) 

This is the main result of this paper. Here d = 2 denotes the dimension of problem (2.1), which can 
be formulated formally in a space of any dimension, and & = 247~. The symbol “=” in (2.2) is used to 
denote convergence in probability terms. Its exact meaning is that for any prescribed number E > 0, 
the ratio of the left and right-hand sides of relation (2.2) differs from unity by less than &with a probability 
which tends to unity as r + 00. Relation (2.2) will be proved below under the additional conditionp Q 
1, that is, for low porosites, although it also holds for finitep. 

The mathematical problem (2.1) can be given a different physical interpretation. Suppose that the 
lower half z < 0 of a three-dimensional space with coordinates (x, y, z) is filled with water, and the upper 
half with a porous material which is not wetted by water and in which the pores contain air. Suppose 
that all the voids of this material are pointing vertically and occupy the region R x [0, +-), where &2 
is the set of holes in the (x, y) plane. Surface tension prevents the water from penetrating through the 
holes of R into the upper half-space. When the pressure in the water and the air is identical, the interface 
between them lies in the plane z = 0. But if the pressure in the water is greater, the interface moves 
up and is a surface z = 2(x, y), the edges of which lie on the edges of the holes. If the pressure drop is 
significant, the forxs of surface tension are insufficient to keep the system in equilibrium, and water 
starts to enter the pore material. The shape of the equilibrium interface Z&y) is found by minimizing 
the functional 

~(z)=j, [y(l+lVZ12)x -PZldxdy 

where y is the surface tension coefficient, and P is the constant pressure difference between the water 
and the air. 

The functional I is the sum of the surface and potential energies of dome-shaped drops which have 
penetrated into the upper half-space under pressure. When minimizing the energy, the functions 
Z(x, y), which are zero on the boundary of R, are taken as test functions. The term with surface energy 
in I increases at the same rate as the linear term. Thus at pressures P above a certain critical value P*, 
the minimum of I goes to minus infinity, and the equilibrium form of the phase interface ceases to exist. 

It follows from the inequalities 1 VZ 1 s (1 + 1 VZ 1 ‘)ln 
to * with the lower limit of the functional 

s 1 + I VZ I that the lower limit of I tends 

It is the same, in different notation, as the functional Jo introduced above in connection with a Bingham 
liquid. Thus the criti’cal pressure drop P* is given by the same formula (2.1) as the critical pressure i*, 
with the parameter X: replaced by the surface tension coefficient 7. 

The asymptotic form of the least eigenvalue of the Laplace operator (-A) in a random perforated region was 
investigated previously [9, 101. For this value we can use Rayleigh’s variational formula, which is similar in form 
to (2.1) but contains second powers of Vu and u in the functional and the normalizing condition. This means that 
we can use the methods devised in [9, lo] and earlier publications to derive the asymptotic formula (2.2). 

It should be noted that the model used in [9] differed from the random chequerboard model we have used. The 
region Q was a d-dimensional cube with edge r from which randomly positioned spheres of constant radius were 
removed. The centres of the spheres had a Poisson distribution with density v > 0. The asymptotic form of the 
CP i* as r + = for this model can also be calculated. To compare it with (2.2), we give the final result 

i’ =khd(d(hr)/v)-“d 

where the constant & has the same value as for the chequerboard model. 
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3. AN UPPER LIMIT OF THE CRITICAL PRESSURE 

We will prove that the probability of the event 
, 

iL(,(,))>k3LdV;“d(1+&) (3.1) 

tends to zero as r + 00 for any E > 0. This, together with the corresponding lower probability limit, 
gives the asymptotic equality (2.2). 

Let a, Q’ be two regions in the plane I@, and SL’ C a. Then it follows at once from the definition of 
the CP that i*(Q) d i* 52’ ( 3-W e will use this inequality to construct an upper limit i*(d)) selecting the 
region Q’ inscribed in R(’ in’such a way that the quantity i*(Q’) can be computed explicitly. 

We will need a formula for the CP in a circular pipe. This has the form 

where S is the cross-section area of the pipe. 

A full derivation of this formula is given, for example, in [B]. At a physical level of rigor, it can be derived by 
equating the total pressure iS to the friction force of the liquid at the wall per unit length of the pipe. When i = 
i* this force is equal to the product of the yield limit k and the circumference of the cross-section, or 24(d) when 
d = 2. If d = 2, the surface area of a d-dimensional sphere must be used instead of the circumference. For a sphere 
of unit volume, the surface area can be expressed in terms of the r-function and is equal to b. 

We will cover the square r x r which contains !A(‘), with identical non-interesting circles, each of area 
S. We will choose the quantity S = S(r) later, but first assume that ad G S Q /. The covering is so made 
that none of the a x a cells into which the square is divided intersects two circles simultaneously, and 
also that as r -+ m the number of circles N satisfies the inequality N 2 C//S for some constant C. If at 
least one circle lies entirely inside the random set Q”, it can be taken as the auxiliary region R’. Then 
we have the inequality 

i*(d”) G khdS-“d (3.2) 

The number of cells IZ which have a non-empty intersection with one of the circles can change from circle to 
circle, but for sufficiently large S we have the uniform estimate 

The probability that a fixed circle is contained in R (‘), that is, that none of the cells which intersect it is discarded, 
is equal top”. The probability of the opposite happening is equal to 1 -p”, and the probability that none of the N 
circles lies entirely in R(‘) is equal to the product of N such expressions, since the configurations for different circles 
are independent. This product does not exceed the quantity 

(I_ p(l+S)S/ud )cr% 
(3.3) 

and this therefore gives an upper limit for the probability of the opposite of (3.2). We now put S = V,(l + a)-*. 
Clearly, with this choice of the function S(r) the quantity (3.3) will tend to zero. To complete the proof, it only 
remains to define 8 = 8(&) so that the event opposite to (3.2) is the same as (3.1). 

4.A LOWER LIMIT OF THE CRITICAL PRESSURE 

Finding a lower limit for the CP is a very much more difficult problem. As in [9], we will first consider 
the low-porosity case, and then give an outline of the proof for finite p. The construction of a lower 
limit is based on an isoperimetric inequality, which we will give in the form of the following lemma ([8], 
Lemma 2.4). 

Lemma 1. The critical pressure i*(n) in a pipe of arbitrary cross-section Q is no less than the critical 
pressure for a circular pipe of the same cross-section area 

i* (l2) 2 kh, 1 S2 I-“” 

where IQ] is the area of a. 
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The analogous st,atement for the least eigenvalue of the Laplace operator in the region R with a 
DirichIet condition on the boundary is well known, and was proved by Rayleigh (for a modem version 
of this proof see [ll]). The same proof, with only slight changes, can be used for Lemma 1, and so it 
will not be given here. 

In the low-porosity case, the basic relation (2.2) follows from the fact that the probability of the event 

i*(a(“) d kh&-““(1-E) (4-l) 

tends to zero for any E > 0 if r + 00, p + 0. 

To prove the last statement, let A@) denote the finite set consistin of the centres of the cells into which the r x 
r square was divided. 7Ne will number the cells using the elements A ? ‘). For each cr E A(‘) we will denote by Q, the 
connected corn 
and is not in R & 

onent of the random set S&‘) in which the corresponding cell lies (a # 0 if the cell was discarded 
). In percolation theory [12] the regions Q, are called clusters. The CP for the entire structure is 

obviously equal to the llowest of the critical pressures in individual cylinders with non-empty sections f&. By Lemma 
1 we have the estimate 

i*(R(‘)) = min (i*(&.J, a E A(‘)) s &(max {IL&], a E A(r)])-l’d (4.2) 

Thus, we can obtain an upper-limit for the CP in terms of the area of the largest of the clusters a, a E A(‘). 
Percolation theory gives a probability estimate of the size of a finite cluster ([12]): for any S > 0 the probability 
that the cluster & contains more than S/ad cells is not greater than (CP)~‘~ for some constant C which depends 
only on the dimension of the problem. This estimate is for an unbounded random lattice, but is even more valid 
if the structure is conlined to a square r x r. It only has a meaning for sufficiently small values of 

The event { 1 iZor 1, a IE A(‘)} > S in probability space is the sum of events 1 G& 1 > S over all a E A R 
< C’. 

. Its probability 
is therefore no greater than the sums of their probabilities can be estimated by the quantity 

(md(Cp) “” =exp{(Sl&)lnC-(S/ad)ln(l/p)+dln(rla)) (4.3) 

We will put S = Vr( 1 + 6) with some 6 > 0. By inequality (4.2), the quantity (4.3) is an upper limit for the probability 
of the event (4.1) with the required choice of 6 = S(E). The quantity (4.3) tends to zero as r + 00 under the condition 
6 In (Up) > (1 +S) In C. For any values of 6 this condition is satisfied only ifp + 0. Thus the required lower probability 
limit has been obtained in the low porosity case. 

For finitep we can use the renormalization method developed in [9], which reduces the problem to 
the case of smallp to prove relation (2.2). A complete account of the method applied to the problem 
of the principal eigenvalue of a Laplace operator is given in [9]. No fundamental changes are needed 
to calculate the CI? 

We will therefore just give an outline of the argument and omit the details. 

It can be verified that the principal term of the asymptotic form of expression (2.2) as r + 0 does not change 
under the transformationa + k,p +p”, where h > 0 and In h 4 In (r/a). The renormalization involves replacing 
the region R@) by a random structure of the same type, but consisting of larger cells and with lower porosity. Then 
in the limit the new structure will possess the same CF! 

In the renormalization we introduce an intermediate scale rl, a 4 rl 4 r and divide the original square into square 
blocks of size rl x rl. Par a fixed configuration of remaining and discarded cells a(‘), each block can be classified 
as “empty”, “ full” or “intermediate”, independently of the others. Blocks which do not contain one discarded 
cell are empty. The probabilitypi of such an event is computed from the formula In (llpr) = (q/a)” In (l/p) and 
tends to zero. Full blot&s are those with a small proportion of remaining cells. They can be removed from the 
structure without substantially affecting the Cp. The strict derivation of this statement from variational principle 
(2.1) is based on the Poincare inequality, while it can be explained in physical terms by noting that in these blocks 
the liquid lies in relatively narrow pores and the pressures required to move it are much greater than the critical 
pressure. 

If there were no intermediate blocks, once full blocks had been removed, the renormalized structure would be 
of the same kind as the original one but would possess porosity pi instead ofp and cells of size rl x rr instead of 
a x a. The results proved for low porosity would still apply and, if In rl 4 In r, formula (2.2) would be proved. 

We can eliminate intermediate blocks by introducing a hierarchy of sizes a 4 rl a . . . 4 r,,, 6 r, where m s 1. 
This construction can be interpreted in the following way. Intermediate blocks cannot be eliminated at the first 
stage of renormalizatialn because they do not “retain” the liquid much better than empty blocks of the same size. 
However, their retaining capacity is much greater than that of empty blocks of the next level. Thus, blocks of size 
r2 x r2, which consist of non-empty blocks of the previous size, are “full” blocks and are removed from the structure. 
As a result, at high levels m B 1 there remains a random region of low porosity for which the CP is not very much 
more than the original CP and has the asymptotic form (2.2). 
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